Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
Biochem Pharmacol ; : 116217, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641306

RESUMO

The Hippo pathway is a key regulator of tissue growth, organ size, and tumorigenesis. Activating the Hippo pathway by gene editing or pharmaceutical intervention has been proven to be a new therapeutic strategy for treatment of the Hippo pathway-dependent cancers. To now, a number of compounds that directly target the downstream effector proteins of Hippo pathway, including YAP and TEADs, have been disclosed, but very few Hippo pathway activators are reported. Here, we discovered a new class of Hippo pathway activator, YL-602, which inhibited CTGF expression in cells irrespective of cell density and the presence of serum. Mechanistically, YL-602 activates the Hippo pathway via MST1/2, which is different from known activators of Hippo pathway. In vitro, YL-602 significantly induced tumor cell apoptosis and inhibited colony formation of tumor cells. In vivo, oral administration of YL-602 substantially suppressed the growth of cancer cells by activation of Hippo pathway. Overall, YL-602 could be a promising lead compound, and deserves further investigation for its mechanism of action and therapeutic applications.

2.
J Am Chem Soc ; 146(10): 6992-7006, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437718

RESUMO

N6-Methyladenine (6mA) of DNA has emerged as a novel epigenetic mark in eukaryotes, and several 6mA effector proteins have been identified. However, efforts to selectively inhibit the biological functions of these effector proteins with small molecules are unsuccessful to date. Here we report the first potent and selective small molecule inhibitor (13h) of AlkB homologue 1 (ALKBH1), the only validated 6mA demethylase. 13h showed an IC50 of 0.026 ± 0.013 µM and 1.39 ± 0.13 µM in the fluorescence polarization (FP) and enzyme activity assay, respectively, and a KD of 0.112 ± 0.017 µM in the isothermal titration calorimetry (ITC) assay. The potency of 13h was well explained by the cocrystal structure of the 13h-ALKBH1 complex. Furthermore, 13h displayed excellent selectivity for ALKBH1. In cells, compound 13h and its derivative 16 were able to engage ALKBH1 and modulate the 6mA levels. Collectively, our study identified the first potent, isoform selective, and cell-active ALKBH1 inhibitor, providing a tool compound for exploring the biological functions of ALKBH1 and DNA 6mA.


Assuntos
DNA , Eucariotos , DNA/metabolismo , Eucariotos/metabolismo , Metilação de DNA
3.
Heliyon ; 10(4): e26090, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404783

RESUMO

Methionine sulfoxide reductase B1 (MSRB1) is involved in the development and immune regulation of multiple tumors. However, the role of MSRB1 in the tumor microenvironment and its potential as a therapeutic target remain largely unknown. In this study, MSRB1 expression patterns were evaluated using pan-cancer RNA sequencing data from multiple cell lines, tissues, and single cells. The pan-cancer prognostic role of MSRB1 was assessed and the association between MSRB1 expression and certain cancer characteristics was analyzed. We showed that MSRB1 expression levels were increased in several types of cancer (P < 0.05) and in certain cell types (macrophages, dendritic cells, and malignant tumor cells). The upregulation of MSRB1 expression was due to DNA copy number amplification. Furthermore, MSRB1 was significantly associated with the activation of immune pathways (P < 0.05, NES > 0), immune cell infiltration, and expression of immune checkpoint molecules. In addition, high expression of MSRB1 was found in a series of in vivo and in vitro immunotherapy response models (P < 0.05), and showed resistance to most targeted drugs. Our results indicated that MSRB1 may regulate the tumor immune microenvironment through an immunoresponse and potentially influence cancer development. This could make it a promising predictive biomarker and therapeutic target for precise tumor immunotherapy.

4.
Int Immunopharmacol ; 127: 111314, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081102

RESUMO

Pyroptosis is a proinflammatory type of regulated cell death and has been involved in many pathological processes. Inhibition of pyroptosis is thought to be a promising strategy for the treatment of related diseases. Here, we performed a phenotypic screening against NLRP3-dependent pyroptosis and obtained the novel compound N77 after structure optimization. N77 showed a half-maximal effective concentration (EC50) of 0.070 ± 0.008 µM against cell pyroptosis induced by nigericin, and exhibited a remarkable ability to prevent NLRP3-dependent inflammasome activation and the release of IL-1ß. Chemical proteomics revealed the biological target of N77 to be glutathione-S-transferase Mu 1 (GSTM1); our mechanism of action studies indicated that GSTM1 might act as a negative regulator of NLRP3 inflammasome activation by modulating the glutathionylation of caspase-1. In vivo, N77 substantially alleviated the inflammatory reaction in a pyroptosis-related acute keratitis model. Overall, we identified a novel pyroptosis inhibitor and revealed a new regulatory mechanism of pyroptosis. Our findings suggest an alternative potential therapeutic strategy for pyroptosis-related diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Piroptose , Transdução de Sinais , Inflamação/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
5.
J Med Chem ; 67(1): 754-773, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38159286

RESUMO

Receptor-interacting protein kinase 1 (RIPK1) is a key regulator of cellular necroptosis, which is considered as an important therapeutic target for necroptosis-related indications. Herein, we report the structural optimization and structure-activity relationship investigations of a series of eutectic 5-substituted-indole-3-carboxamide derivatives. The prioritized compound 10b exhibited low nanomolar IC50 values against RIPK1 and showed good kinase selectivity. Based on its eutectic structure, 10b occupied both the allosteric and ATP binding pockets of RIPK1, making it a potent dual-mode inhibitor of RIPK1. In vitro, 10b had a potent protective effect against necroptosis in cells. Compound 10b also provided robust protection in a TNFα-induced systemic inflammatory response syndrome (SIRS) model and imiquimod (IMQ)-induced psoriasis model. It also showed good pharmacokinetic properties and low toxicity. Overall, 10b is a promising lead compound for drug discovery targeting RIPK1 and warrants further study.


Assuntos
Síndrome de Resposta Inflamatória Sistêmica , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Relação Estrutura-Atividade , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores , Apoptose , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
6.
Bioorg Chem ; 143: 107001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101266

RESUMO

Although the SARS-CoV-2 pandemic has ended, multiple sporadic cases still exist, posing a request for more antivirals. The main protease (Mpro) of SARS-CoV-2, a key enzyme for viral replication, is an attractive target for drug development. Here, we report the discovery of a new potent α-ketoamide-containing Mpro inhibitor, N-((R)-1-cyclohexyl-2-(((R)-3-methoxy-1-oxo-1-((1-(2-oxo-2-((thiazol-2-ylmethyl)amino)acetyl)cyclobutyl)amino)propan-2-yl)amino)-2-oxoethyl)-4,4-difluorocyclohexane-1-carboxamide (20j). This compound presented promising enzymatic inhibitory activity against SARS-CoV-2 Mpro with an IC50 value of 19.0 nM, and an excellent antiviral activity in cell-based assay with an EC50 value of 138.1 nM. This novel covalent inhibitor may be used as a lead compound for subsequent drug discovery against SARS-CoV-2.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
7.
J Med Chem ; 66(24): 17044-17058, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38105606

RESUMO

Protein localization is frequently manipulated to favor tumor initiation and progression. In cancer cells, the nuclear export factor CRM1 is often overexpressed and aberrantly localizes many tumor suppressors via protein-protein interactions. Although targeting protein-protein interactions is usually challenging, covalent inhibitors, including the FDA-approved drug KPT-330 (selinexor), were successfully developed. The development of noncovalent CRM1 inhibitors remains scarce. Here, by shifting the side chain of two methionine residues and virtually screening against a large compound library, we successfully identified a series of noncovalent CRM1 inhibitors with a stable scaffold. Crystal structures of inhibitor-protein complexes revealed that one of the compounds, B28, utilized a deeply hidden protein interior cavity for binding. SAR analysis guided the development of several B28 derivatives with enhanced inhibition on nuclear export and growth of multiple cancer cell lines. This work may benefit the development of new CRM1-targeted therapies.


Assuntos
60611 , Carioferinas , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligação Proteica , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo
8.
Nature ; 624(7992): 672-681, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935376

RESUMO

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sítios de Ligação , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Ligantes , Simulação de Dinâmica Molecular , Mutação , Polifarmacologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Especificidade da Espécie , Especificidade por Substrato
9.
Nat Commun ; 14(1): 7430, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973845

RESUMO

Poly (ADP-ribose) polymerase inhibitors (PARPi) are selectively active in ovarian cancer (OC) with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1/2 and other DNA repair pathway members. We sought molecular targeted therapy that induce HRD in HR-proficient cells to induce synthetic lethality with PARPi and extend the utility of PARPi. Here, we demonstrate that lysine-specific demethylase 1 (LSD1) is an important regulator for OC. Importantly, genetic depletion or pharmacological inhibition of LSD1 induces HRD and sensitizes HR-proficient OC cells to PARPi in vitro and in multiple in vivo models. Mechanistically, LSD1 inhibition directly impairs transcription of BRCA1/2 and RAD51, three genes essential for HR, dependently of its canonical demethylase function. Collectively, our work indicates combination with LSD1 inhibitor could greatly expand the utility of PARPi to patients with HR-proficient tumor, warranting assessment in human clinical trials.


Assuntos
Proteína BRCA1 , Neoplasias Ovarianas , Humanos , Feminino , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Regulação para Baixo , Reparo do DNA , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Recombinação Homóloga , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733739

RESUMO

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Assuntos
Inibição Psicológica , Neuralgia , Humanos , Microscopia Crioeletrônica , Ligação Competitiva
11.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37597514

RESUMO

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Assuntos
Colite , Receptores Acoplados a Proteínas G , Animais , Camundongos , Regulação Alostérica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Inflamação/tratamento farmacológico , Corpos Cetônicos , Niacina/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
12.
Bioorg Med Chem Lett ; 92: 129407, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37437852

RESUMO

The COVID-19 pandemic has caused people immense suffering all over the world. Although the World Health Organization (WHO) has announced the end of the pandemic, the sporadic virus epidemic is still ongoing and may exist permanently. Effective antivirals against SARS-CoV-2 are important to deal with the long-term threat. The main protease (Mpro) is a crucial target for drug development due to its role in the process of virus's replication and transcription. Herein, we report benzodiazepine derivatives as a new class of Mpro inhibitors. Structure-activity relationship (SAR) studies led to the discovery of the most active compound, methyl 10-(2-chloroacetyl)-1-oxo-11-(4-(trifluoromethyl)phenyl)-2,3,4,5,10,11-hexahydro-1H-dibenzo[b,e][1,4]-diazepine-7-carboxylate (11a), which shows an IC50 value of 0.180 ± 0.004 µM. The X-ray crystal structure shows that 11a covalently binds to Mpro. Collectively, we have obtained a new small molecule inhibitor targeting Mpro, which can serve as a lead compound for subsequent drug discovery against SARS-CoV-2.


Assuntos
Benzodiazepinas , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases , Humanos , Anticonvulsivantes , Antivirais/farmacologia , Benzodiazepinas/farmacologia , Hipnóticos e Sedativos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores
13.
Nat Med ; 29(8): 2007-2018, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37524952

RESUMO

Host-pathogen interactions and pathogen evolution are underpinned by protein-protein interactions between viral and host proteins. An understanding of how viral variants affect protein-protein binding is important for predicting viral-host interactions, such as the emergence of new pathogenic SARS-CoV-2 variants. Here we propose an artificial intelligence-based framework called UniBind, in which proteins are represented as a graph at the residue and atom levels. UniBind integrates protein three-dimensional structure and binding affinity and is capable of multi-task learning for heterogeneous biological data integration. In systematic tests on benchmark datasets and further experimental validation, UniBind effectively and scalably predicted the effects of SARS-CoV-2 spike protein variants on their binding affinities to the human ACE2 receptor, as well as to SARS-CoV-2 neutralizing monoclonal antibodies. Furthermore, in a cross-species analysis, UniBind could be applied to predict host susceptibility to SARS-CoV-2 variants and to predict future viral variant evolutionary trends. This in silico approach has the potential to serve as an early warning system for problematic emerging SARS-CoV-2 variants, as well as to facilitate research on protein-protein interactions in general.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/genética , SARS-CoV-2/genética , Inteligência Artificial , Ligação Proteica
14.
Eur J Med Chem ; 259: 115657, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37517202

RESUMO

The SARS-CoV-2 main protease (Mpro, also named 3CLpro) is a promising antiviral target against COVID-19 due to its functional importance in viral replication and transcription. Herein, we report the discovery of a series of α-ketoamide derivatives as a new class of SARS-CoV-2 Mpro inhibitors. Structure-activity relationship (SAR) of these compounds was analyzed, which led to the identification of a potent Mpro inhibitor (27h) with an IC50 value of 10.9 nM. The crystal structure of Mpro in complex with 27h revealed that α-ketoamide warhead covalently bound to Cys145s of the protease. In an in vitro antiviral assay, 27h showed excellent activity with an EC50 value of 43.6 nM, comparable to the positive control, Nirmatrelvir. This compound displayed high target specificity for Mpro against human proteases and low toxicity. It also possesses favorable pharmacokinetic properties. Overall, compound 27h could be a promising lead compound for drug discovery targeting SARS-CoV-2 Mpro and deserves further in-depth studies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Inibidores de Proteases/química , Proteínas não Estruturais Virais , Antivirais/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
15.
Adv Sci (Weinh) ; 10(24): e2300383, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340596

RESUMO

Endometrial cancer (EC) is the most common female reproductive tract cancer and its incidence has been continuously increasing in recent years. The underlying mechanisms of EC tumorigenesis remain unclear, and efficient target therapies are lacking, for both of which feasible endometrial cancer animal models are essential but currently limited. Here, an organoid and genome editing-based strategy to generate primary, orthotopic, and driver-defined ECs in mice is reported. These models faithfully recapitulate the molecular and pathohistological characteristics of human diseases. The authors names these models and similar models for other cancers as organoid-initiated precision cancer models (OPCMs). Importantly, this approach can conveniently introduce any driver mutation or a combination of driver mutations. Using these models,it is shown that the mutations in Pik3ca and Pik3r1 cooperate with Pten loss to promote endometrial adenocarcinoma in mice. In contrast, the Kras G12D mutati led to endometrial squamous cell carcinoma. Then, tumor organoids are derived from these mouse EC models and performed high-throughput drug screening and validation. The results reveal distinct vulnerabilities of ECs with different mutations. Taken together, this study develops a multiplexing approach to model EC in mice and demonstrates its value for understanding the pathology of and exploring the potential treatments for this malignancy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Endométrio , Feminino , Animais , Camundongos , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Mutação/genética , Modelos Animais
16.
Bioorg Med Chem Lett ; 92: 129383, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348572

RESUMO

Aryl hydrocarbon receptor (AHR) is a ligand dependent transcription factor and participates in the regulation of the immune balance of Th17/22 and Treg cells. It has been found to be widely expressed in the skin, and involved in the pathology of psoriasis. Therefore, AHR is thought as a potential intervention target for psoriasis. Here, we report the discovery of 5-((1H-indazol-3-yl) methylene)-2-thioxoimidazolidin-4-one derivatives as a new class of AHR agonists. Structure-activity relationship analyses led to the identification of the most active compound, 5- ((1H-indazol-3-yl)methylene) -3- (prop-2-yn-1-yl) -2-thiooimidazolidin-4-one (24e), which exhibited an EC50 value of 0.015 µM against AHR. Mechanism of action studies showed that 24e regulated the expression of CYP1A1 by activating the AHR pathway. Topical administration of 24e substantially alleviated imiquimod (IMQ)-induced psoriasis-like skin lesion. Overall, compound 24e could be a good lead compound for drug discovery against psoriasis, and hence deserving further in-depth studies.


Assuntos
Indazóis , Psoríase , Camundongos , Animais , Indazóis/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele/metabolismo , Imiquimode/metabolismo
17.
MedComm (2020) ; 4(3): e269, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250145

RESUMO

Lysine-specific histone demethylase 1 (LSD1) is an attractive target for malignancies therapy. Nevertheless, its role in hepatocellular carcinoma (HCC) progression and the potential of its inhibitor in HCC therapy remains unclear. Here, we show that LSD1 overexpression in human HCC tissues is associated with HCC progression and poor patient survival. ZY0511, a highly selective and potent inhibitor of LSD1, suppressed human HCC cell proliferation in vitro and tumor growth in cell-derived and patient-derived HCC xenograft models in vivo. Mechanistically, ZY0511 induced mRNA expression of growth arrest and DNA damage-inducible gene 45beta (GADD45B) by inducing histone H3 at lysine 4 (H3K4) methylation at the promoter of GADD45B, a novel target gene of LSD1. In human HCC tissues, LSD1 level was correlated with a decreased level of GADD45B, which was associated with HCC progression and predicted poor patient survival. Moreover, co-administration of ZY0511 and DTP3, which specifically enhanced the pro-apoptotic effect of GADD45B, effectively inhibited HCC cell proliferation both in vitro and in vivo. Collectively, our study revealed the potential value of LSD1 as a promising target of HCC therapy. ZY0511 is a promising candidate for HCC therapy through upregulating GADD45B, thereby providing a novel combinatorial strategy for treating HCC.

19.
Signal Transduct Target Ther ; 8(1): 128, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928316

RESUMO

Emerging SARS-CoV-2 variants, particularly the Omicron variant and its sublineages, continually threaten the global public health. Small molecule antivirals are an effective treatment strategy to fight against the virus. However, the first-generation antivirals either show limited clinical efficacy and/or have some defects in pharmacokinetic (PK) properties. Moreover, with increased use of these drugs across the globe, they face great pressure of drug resistance. We herein present the discovery and characterization of a new generation antiviral drug candidate (SY110), which is a potent and selective inhibitor of SARS-CoV-2 main protease (Mpro). This compound displayed potent in vitro antiviral activity against not only the predominant SARS-CoV-2 Omicron sublineage BA.5, but also other highly pathogenic human coronaviruses including SARS-CoV-1 and MERS-CoV. In the Omicron-infected K18-hACE2 mouse model, oral treatment with SY110 significantly lowered the viral burdens in lung and alleviated the virus-induced pathology. Importantly, SY110 possesses favorable PK properties with high oral drug exposure and oral bioavailability, and also an outstanding safety profile. Furthermore, SY110 exhibited sensitivity to several drug-resistance Mpro mutations. Collectively, this investigation provides a promising new drug candidate against Omicron and other variants of SARS-CoV-2.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Animais , Humanos , Camundongos , Administração Oral , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19/métodos , Proteases 3C de Coronavírus/antagonistas & inibidores
20.
J Med Chem ; 66(5): 3460-3483, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36821347

RESUMO

Selectively targeting the cannabinoid receptor CB2 is an attractive therapeutic strategy for the treatment of inflammatory pain without psychiatric side effects mediated by the cannabinoid receptor CB1. Herein, we report the discovery of 4-(1,2,4-oxadiazol-5-yl)azepan-2-one derivatives as a new class of CB2 agonists. Systematic structure-activity relationship investigations resulted in the identification of the most potent compound 25r. This compound displayed high selectivity for CB2 against CB1 (CB2 EC50 = 21.0 nM, Emax = 87%, CB1 EC50 > 30 µM, ratio CB1/CB2 > 1428) with favorable pharmacokinetic properties. Especially, 25r demonstrated significant efficacy in the analgesic model of rodent inflammatory pain. All the results suggest that compound 25r could serve as a lead compound for treating inflammatory pain and deserves further in-depth studies.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Humanos , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Relação Estrutura-Atividade , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...